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Abstract

Given a coloring of a set, classical Ramsey theory looks for various
configurations within a color class. Rainbow configurations, also called
anti-Ramsey configurations, are configurations that occur across distinct
color classes. We present some very general results about the types of
colorings that will guarantee various types of rainbow configurations in
finite and infinite settings, as well as several illustrative corollaries.

1 Introduction

Classical Ramsey problems typically involve partitioning an ambient set up into
disjoint subsets called color classes, then looking for conditions under which a
given configuration will be present in one of the color classes. One canonical
example is Schur’s Theorem, which says that if you color the natural numbers
with a finite number of colors, then there must be a color class with a triple of
the form (x, y, x+ y).

Here, we consider so-called anti-Ramsey or rainbow problems. Rainbow
problems have been studied in different contexts; see [1] and [6] and the ref-
erences therein for some arithmetic rainbow results, and see [2] and [7] and
the references therein for results in graph theory. We begin with some basic
definitions.

Definition 1.1. A coloring of X is a function f : X → C for some set C of
colors; the preimages {f−1(i)} are the color classes of the coloring. Notice
that the color classes form a partition of X.

Definition 1.2. A rainbow configuration is a set (x1, x2, . . . , xk) ∈ Xk such
that x1, x2, . . . , xk all belong to distinct color classes.
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1.1 Results

In this paper, we prove some very general results on what kinds of colorings will
guarantee the existence of various types of rainbow configurations. Our first
main result is very general, so we first give an illustrative corollary, which can
be seen as a rainbow version of Schur’s Theorem. We refer the reader to [6] and
[1] for related results.

Theorem 1.3. Suppose we have a coloring of a finite abelian group, G. If no
color class has size ≥ 2

27 |G| then there must be a rainbow triple of the form
(x, y, x+ y).

Theorem 1.3 is a corollary of a more general result, which we now state as
our first main theorem. In this statement, E is the set of k-tuples of elements of
X that form whatever configuration we are concerned with (such as (x, y, x+y)
in Theorem 1.3). The quantity M depends on how many of these k-tuples
share a pair of coordinates (in Theorem 1.3, each pair of coordinates uniquely
determines a triple).

Theorem 1.4. Let X be a finite set of size n, and E ⊂ Xk be a set of k-tuples,
with the property that there exist constants Mi,j, such that for any

x = (x1, x2, . . . , xk) ∈ E,

we have that |{y ∈ E : yi = xi, yj = xj}| ≤Mi,j. Define

M =
∑
i<j

Mi,j .

If no color class has size ≥ Cn, where |E| ≥ Dn2, and C < 2D
9M , then there

must be a rainbow k-tuple in E.

We now list a few other applications of Theorem 1.4. The next result was
inspired by the corresponding Ramsey problem: which colorings of various rings
admit monochromatic quadruples of the form (x, y, x + y, xy)? Note that this
result involves both addition and multiplication. We state a similar result in the
negative. That is, if there are no rainbow configurations, then we must have a
color class that is too large. See [3, 4, 5, 8] for background and related Ramsey
type problems. We let Fq denote the finite field of q elements.

Corollary 1.5. If we color Fq such that each color class has size < (2−o(1))q
63 ,

then there must be a rainbow quadruple of the form (x, y, x+ y, xy).

Following this, we have a result guaranteeing the existence of long rainbow
arithmetic progressions in a wide class of finite abelian groups. See [10] and the
references contained therein ([1] in particular), for more on rainbow arithmetic
progressions.
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Corollary 1.6. If we color a finite (additive) abelian group G, with no (non-
identity) element of order < k, then if there are no rainbow k-arithmetic pro-
gressions, at least one color class has size ≥ 2

9(k
2)
|G|.

We also include this application of Theorem 1.4 with an ambient set that is
not even a group.

Corollary 1.7. If we color [1..n] such that there are no rainbow triples of the

form (x, y, x+ y), then at least one color class has size ≥ 1−o(1)
27 n.

Under some slightly stronger conditions, we can estimate how many rainbow
configurations must be present.

Theorem 1.8. Suppose the conditions of Theorem 1.4 are satisfied, but are
strengthened so that no color class has size ≥ Cpn for some p ∈ (0, 1]. Then
there are at least (1− p)Dn2 rainbow elements of E.

A more general statement is the following theorem, which works on finite
measure spaces in place of finite sets, but with special types of colorings. How-
ever, to deal with infinite sets, we need to introduce some restrictions on the
types of colorings and measures that we can use.

Definition 1.9. Let (X,µ) be a measure space. We call a coloring of X
tractable if every color class is a measurable subset of X and there are only at
most countably many color classes.

The theorems below hold in more generality than this; however, the restric-
tions involved (and the ensuing measures νt) seem to be more complicated.
While special cases may still hold for colorings that are not tractable, Example
3.2, given later, illustrates why such restrictions are needed in general.

Theorem 1.10. Let (X,µ) be a finite measure space, n = µ(X) <∞. Suppose
we have E ⊂ Xk, k ≥ 3, with the property that there exist constants Mi,j such
that for any

x = (x1, x2, . . . , xk) ∈ E,

we have that |{y ∈ E : yi = xi, yj = xj}| ≤Mi,j. Define

M =
∑
i<j

Mi,j .

mij(E) =

∫∫
|{y ∈ E : xi = yi, xj = yj}|dxidxj

m(E) =
∑
i<j

mij(E)

If we have a tractable coloring where no color class has measure ≥ Cn, with
m(E) ≥ D

(
k
2

)
n2, and C < 2D

9M , then there must be a rainbow element in x ∈ E.
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Note that we can prove Theorem 1.4 by applying Theorem 1.10 with µ as
an appropriate counting measure. To see how Theorem 1.10 works with more
general measures, we prove a continuous version of Theorem 1.3.

Corollary 1.11. Fix a probability measure µ on the unit circle in the complex
plane. If we color the circle with at least 14 equally-sized µ-measurable color
classes, there must be a rainbow triple of the form (x, y, xy) in the circle.

Our final example application along these lines is geometric. This is anal-
ogous to the result due to the second listed author in [9] in vector spaces over
finite fields.

Corollary 1.12. If we split any square into at least 104 equally-sized Lebesgue
measurable color classes, then it must contain three points x1, x2, x3 such that
|x1 − x2| = |x2 − x3| = |x1 − x3| and the color classes of the points are distinct
(i.e. a rainbow equilateral triangle).

Finally, we present an even more general result involving so-called “sub-
rainbow” configurations. These are configurations which may not be strictly
rainbow, but have no color represented too many times.

Definition 1.13. Let X have a coloring; let x ∈ Xk. Then x is w-subrainbow
if x has no w components of the same color.

Our usual definition of rainbow is here called 2-subrainbow, because any
rainbow k-tuple has no 2 elements of the same color. We now introduce a
technical definition, which we will motivate more in Subsection 3.2.1. For now,
suffice it to say that it quantifies of the an amount of freedom inherent in various
configurations.

Definition 1.14. Let (X,µ) be a finite measure space. Let E ⊂ Xk, and fix a
t ∈ [2 . . . k−1]. For any subset S ⊂ [1..k], with |S| = t, write S as {s1, s2, . . . , st}
and define M(S) to be

sup
(y1,...,yk)∈E

|{x ∈ E : xsj = ysj}|.

Then we say that the t-bound of E is
∑
SM(S), and we call this value Mt so

long as it is finite. Similarly, define m(S) to be∫
· · ·
∫
|y ∈ E : ysi = xsi , i ∈ [1..t]|dxs1 . . . dxs2

and define m =
∑
SmS.

We pause to note that we can actually do a little better than the bound on
C in the following result, depending on the various parameters, but the bound
given always holds.
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Theorem 1.15. Let (X,µ) be a finite measure space, and define n = µ(X). Let
E ⊂ Xk be measurable, and let the t-bound of E be M , and suppose m ≥ D

(
k
t

)
nt

and 2 ≤ w ≤ t < k. Then for any tractable coloring of X, if µ(A) ≤ Cn for all
color classes A, E must contain a w-subrainbow element, as long as

Cw−1 <
2w−1D

3wM
(
t
w

) .
To illustrate the difference between this and the preceding theorems, here is

a corollary:

Corollary 1.16. Let G be a finite abelian group, 2, 3 - |G|, with some coloring.
Then:

• if no color class has size ≥ 1
135 |G|, there must be a rainbow quintuple of

the form (x, y, z, x+ y + z, x+ 2y + 3z).

• if no color class has size ≥
√

2
135 |G|, there must be a 3-subrainbow quin-

tuple of the form (x, y, z, x+ y + z, x+ 2y + 3z).

1.2 Outline of the rest of the paper

We will start by proving Theorem 1.4, then use it to prove its corollaries, The-
orem 1.3, Corollaries 1.5, 1.6, and 1.7, and Theorem 1.8 in Section 2. In the
next section, we will explain how to modify the proof of Theorem 1.4 to obtain
Theorem 1.10, the infinite setting. We will then apply Theorem 1.10 to prove
Corollaries 1.11 and 1.12. Finally, we will finish by showing how to modify the
above arguments further to prove Theorem 1.15, which deals with subrainbow
configurations, and use it to prove Corollary 1.16.

2 Theorem 1.4 and some applications

2.1 Proof of Theorem 1.4

Proof. The basic idea of this proof will be to assume that we have no rainbow
configuration, then find that there must be some large color class. To do this, we
will merge color classes together to make a uniform count. Note that merging
color classes can destroy but not create rainbow configurations. So if we began
without a rainbow configuration, then merging classes will not create one.

Fix C > 0 to be determined later. Now, proceed to greedily merge the
smallest two color classes pairwise until every class has size between (1/2)Cn
and (3/2)Cn. Let s denote the number of color classes after this merging.

There are |E| k-tuples in the set E. Fix a color i, and let ni denote the
number of elements from X in color class i. Recall that M bounds how many
k-tuples from E share (at least) a pair of coordinates. So there are at most
Mn2

i k-tuples in E with at least two elements with color i. Now, if there are no
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rainbow k-tuples then every k-tuple in E must have at least two coordinates of
the same color, so

|E| ≤M
s∑
i=1

n2i ≤M
s∑
i=1

(
3

2
Cn

)2

≤ 9M

4
sC2n2,

where we used the assumption that ni ≤ (3/2)Cn for all i. So we have that

s ≥ 4

9M

1

C2

|E|
n2
≥ 4D

9M

1

C2
.

But every class has size at least (1/2)Cn, which, since they are all disjoint,
implies that X has at least

1

2
Cn · 4D

9M
C−2 =

2D

9M

n

C
> n

elements, a contradiction.

2.2 Corollaries of Theorem 1.4

Here, we prove Theorem 1.3, Corollaries 1.5, 1.6, and 1.7, and Theorem 1.8.
These illustrate how the various quantities arise.

2.2.1 Proof of Theorem 1.3

Proof. We will apply Theorem 1.4 with X = G and k = 3. The set E ⊂ X3

will be the set of triples of G of the form (x, y, x + y). Now, M1,2 will be the
number of different triples in G that can share the first two coordinates. But
any pair of first and second coordinates, x and y, will uniquely determine the
third coordinate, x + y. There may be other triples in X3 that share the first
two coordinates, but only one of them will be in E, so M1,2 = 1. Notice that any
pair of elements x and x+ y will uniquely determine y, so M1,3 = 1. Similarly,
M2,3 will be 1, so

M =
∑
i<j

Mi,j = M1,2 +M1,3 +M2,3 = 3.

All that is left is for us to apply Theorem 1.4 is to get a value for D. So we
need to see how big E is in terms of X. As each pair of elements, x and y, from
G generates a distinct triple (x, y, x+ y) in E, we see that |E| = n2, so D = 1.
Plugging everything into Theorem 1.4 guarantees the existence of a rainbow
triple of the form (x, y, x+ y) for any coloring where each color class is smaller
than Cn, where

C <
2D

9M
=

2

27
.
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2.2.2 Proof of Corollary 1.5

Proof. Similar to the proof of Theorem 1.3, we will set X = Fq, find a set of
quadruples, E, and estimate the constants M and D to plug into Theorem 1.4.
Initially, we would start with all quadruples of the form (x, y, x + y, xy) as E,
but we drop all quadruples with xy = 0, because given xy = x = 0 there are
still many possible quadruples, and a quadruple with x = xy would necessarily
be nonrainbow. So M1,4 would be too large to get an effective bound. This
leaves the number of possible quadruples that comprise our set E to be

q2 − 2q + 1 = (1− o(1))q2.

Now, |Fq| = q, so n = q. Since E = (1− o(1))n2, we have that D = (1− o(1)).
Knowing any two of x, y, x+y clearly fixes the rest of the tuple, and knowing

xy and either x or y does the same (as xy 6= 0). Therefore Mi,j = 1 for all of
the Mi,j except M3,4. If we know x + y and xy then x and y must be roots of
the polynomial t2− (x+ y)t+ (xy), of which there are at most two (so there are
at most two quadruples, since we can change the order of x and y). This gives
us that M3,4 = 2, and summing this with the other Mi,j gives M = 7.

When we put these values into Theorem 1.4, we get that there must be a
rainbow quadruple of the form (x, y, x + y, xy) if all of the color classes are
smaller than Cq, for

C <
2D

9M
=

2− o(1)

63
.

2.2.3 Proof of Corollary 1.6

Proof. Again, we will find a suitable set E, then compute the corresponding
values of M and D. Since our ambient group is G, we have that n = |G|. We set
E to be the set of all ordered k-tuples whose elements form an ordered k-term
arithmetic progression:

E := {(z, z + x, . . . , z + (k − 1)x) : z, x ∈ G}.

Note that in E, we could have two elements that consist of the same group
elements, but in distinct orders. Each of the k-term arithmetic progressions
above will be distinct, giving us n2 distinct elements in E, one for every pair of
elements, (z, x) ∈ G2. So D = 1.

To get a handle on M , we need to see how often two k-term arithmetic
progressions can have two elements in the same spot (e.g., they have the same
fifth element and same ninth element). So suppose that the k-term arithmetic
progressions generated in E by (z, x) and (z′, x′) share the same elements at the
slots numbered a and b, for some distinct a, b ∈ [0..(k − 1)]. That is,

z + ax = z′ + ax′ and z + bx = z′ + bx′.
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This gives ax− ax′ = z′ − z = bx− bx′. Then a(x− x′) = b(x− x′), meaning

(a− b)(x− x′) = 0;

so x− x′ has order ≤ |a− b|, meaning x = x′ (since |a− b| < k), which implies
that the two progressions are identical. Thus all the Mi,j are 1, and there are(
k
2

)
of them. So M =

(
k
2

)
, D = 1 and the result follows.

2.2.4 Proof of Corollary 1.7

Proof. This runs essentially the same way as the proof of Theorem 1.3, with
M = 3. However, there is a slightly different calculation for D. Note that if we
choose x = c, there are n − c possible choices for y such that x + y ∈ [1 . . . n].
Therefore:

|E| =
n∑
c=1

n− c =

(
n

2

)
=

(
1

2
− o(1)

)
n2,

giving D = 1
2 − o(1), and we apply Theorem 1.4.

2.2.5 Proof of Theorem 1.8

Proof. Using Theorem 1.4, we see that there must be a rainbow element of E.
Thus we can remove it from E, and we can keep finding rainbow elements as
long as |E| > Dpn2. So there are at least Dn2 −Dpn2 = (1 − p)Dn2 rainbow
elements of E.

3 More general settings

Here, we show how the proof of Theorem 1.4 can be modified to handle much
more general settings.

3.1 Theorem 1.10

3.1.1 Proof of Theorem 1.10

Proof. As before, merging color classes can destroy but not create rainbow ele-
ments; so if we merge classes and still have a rainbow element, there must have
been a rainbow element beforehand. We will use Zorn’s lemma to find a nice
coloring. Define a coloring λ to be a merging of a coloring λ′ if for every x1
and x2 of the same color under λ′, x1 and x2 are the same color under λ (which
is equivalent to saying that every color class in λ is a union of color classes in
λ′). Since we have countably many colors, merging color classes is the same as
taking at most countable unions of measurable sets, so color classes of mergings
will still be measurable.

Call our original coloring λ0, and let Λ be the set of all colorings that are
mergings of λ0 and have no color class of size > Cn. Then we can place a
partial ordering on Λ by λ1 � λ2 when λ2 is a merging of λ1. Suppose {λi}i∈I
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is a nonempty chain in Λ; we define λ by the rule that x has the same color
as x′ in λ if and only if x has the same color as x′ in some λi. Then λ � λ0.
For contradiction, suppose λ contains a color class A of measure Cn+ ε. Then
there exist finitely many nonempty color classes A1, . . . , Am of λ0 such that
Ai ⊂ A and

∑
µ(Ai) > Cn. Pick xi ∈ Ai. Then by definition of λ, there exist

j1, . . . , jm ∈ I such that x1 is the same color as xi in λji (since they’re the same
color in λ). Define j to be the maximum of all of these j1, . . . , jm ∈ I, which
exists as {λi}i∈I is a nonempty chain. But then all the xi are the same color in
λj , meaning λj has a color class of size at least

∑
µ(Ai) > Cn, and contradicting

λj ∈ Λ. So every chain in Λ has an upper bound in Λ, meaning Zorn’s lemma
applies (Λ 6= ∅ since λ0 ∈ Λ); hence there exists a maximal coloring λ.

Now, λ can have only at most one color class of measure < (1/2)Cn (since if
it had two, we could merge them and get a class of measure < Cn, contradicting
maximality). If we have such a color class, then we can merge it with one of the
other ones so that all classes have measure between (1/2)Cn and (3/2)Cn and
if we don’t then we already have this bound. Note that since every color class
has measure ≥ (1/2)Cn, there are finitely many color classes; let the number of
color classes be s.

If there are no rainbow k-tuples, then

m(E) ≤
(
k

2

)
M
∑
A∈λ

µ(A)2 ≤M
(
k

2

)∑
A∈λ

(
3

2
Cn

)2

≤ 9M

4

(
k

2

)
sC2n2,

so s ≥ 4
9MC−2 m(E)

(k
2)n2

≥ 4D
9MC−2. But every class has size at least (1/2)Cn,

which, since they are all disjoint, implies X has total measure at least

1

2
Cn · 4D

9M
C−2 =

2D

9M

n

C
> n,

which is a contradiction.

3.1.2 Proof of Corollary 1.11

Proof. In what follows, we will assume that all color classes have the same µ-
measure. Call the unit circle in the complex plane X. By definition, (X,µ) is
a finite measure space with µ(X) = 1. Our set E will be the set of all triples
of the form (x, y, xy) : x, y ∈ X. Now, since any pair, (x, y) ∈ X2, uniquely
determines a triple in E, and all triples in E can be so determined, we have that
m(E) = 3µ(X) · µ(X) = 3. So D = 1. Also, as in the proof of Theorem 1.3, we
will see that M = 3. So, by Theorem 1.10, we are guaranteed a rainbow triple
of the form (x, y, xy), as long as we have a tractable coloring where no color
class has µ-measure ≥ Cn, where

2D

9M
=

2

9 · 3
=

2

27
≥ C.

Since each color class has µ-measure (1/14) < (2/27), we satisfy the hypotheses
of Theorem 1.10.
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3.1.3 Pathological colorings

These examples serve to motivate the restriction of tractability in Theorem 1.10.
The first is a simple example to show that the existence of a rainbow triple of
the form (x, y, x+ y) need not exist in a coloring of R with an infinite number
of color classes.

Example 3.1. Color R by the smallest power of two in the denominator. That
is, color class 0 will be all of the rational numbers with an odd denominator,
when written in lowest terms, color class 1 will be all numbers with a single power
of 2 in the denominator, when written in lowest terms, and so on. Finally, put
the irrationals in their own color class, called ∞. Now suppose that x is in color
class i and y is in color class j, where i and j could be nonnegative integers or
∞. Then x+y will live in the color class max(i, j), and we will have no rainbow
triples of the form (x, y, x+ y).

If we drop the assumption that all color classes are measurable then we can
get some paradoxical behavior. The following example illustrates this.

Example 3.2. Let X = R under any measure; let {xi}i∈I be a well-ordered basis
for R over Q. Then define Aj to be the set of linear combinations

∑
i∈I cixi

with all but finitely many ci equal to zero, and j = min(i : ci 6= 0). Since the
xi form a basis, this is indeed a coloring of R, but for any ai ∈ Ai, ai′ ∈ Ai′ ,
i 6= i′, a + a′, a − a′, a′ − a ∈ Amin(i,i′). So there are in fact no rainbow triples
of the form (x, y, x+ y) in this coloring.

3.1.4 Proof of Corollary 1.12

Proof. Since the desired property is independent of rotation or scaling, we can
assume X = [0, 1]2. For any fixed x1, any x2 which is closer to x1 than x1 is to
the boundary of X will result in 2 equilateral triangles contained in X since each
of the points equidistant from x1 and x2 will be contained in X; the measure
of the set of x2 satisfying this is equal to the area of the largest possible circle
centered at x1 contained in X. By symmetry it suffices to consider the eighth of
the square defined by x ∈ [0, 1/2], y ∈ [0, x] (and for all these points the closest
side is the bottom). So we get a total measure of

2 · 8
∫ 1/2

0

∫ x

0

πy2dydx = 16π

∫ 1/2

0

x3

3
dx

=
16

3
π

(1/2)4

4

=
π

12

which means m(E) = 3 π
12 so D = π

12 .
Applying Theorem 1.10 with M = 6 and D = π

12 , we get that⌈
1

C

⌉
=

⌈
9M

2D

⌉
=

⌈
324

π

⌉
= 104
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colors of equal measure suffice.

3.2 Theorem 1.15

3.2.1 Explaining t-bounds

In the results up to this point, we have been using M , which is the t-bound with
t = 2. This is why the Mi,j measured when distinct configurations could share
exactly 2 coordinates. For example, if you look back at the previous proofs, the
2-bound of the set of additive triples of the form (x, y, x+ y) is 3; the 2-bound
on the set of k-length arithmetic progressions in Zp is

(
k
2

)
as long as k � p; the

2-bound on sets of the form (x, y, x+ y, xy) in Zp is 7.
For higher order t bounds, we will be considering how often there are t

coordinates shared by a pair of distinct configurations. For example, suppose
we were considering k-point configurations in Rd. Then the 3-bound would be
measuring how many of the k-point configurations being considered could share
3 points. These higher-order t-bounds will result from configuration spaces
where more than two elements are required in order to determine a tuple up to
some small multiplicity. For example, if we are looking for rainbow quadruples
(x, y, z, x+ y + z) in some abelian group, we will be interested in the 3-bound.

3.2.2 Proof of Theorem 1.15

Proof. By the same Zorn’s Lemma merging argument as before, we can assume
that every color class has size between 1

2Cn and 3
2Cn. As a result of this merging

process there are only finitely many colors; call this number s. If no element
in E is w-subrainbow, then every element of E has at least w elements from at
least one color. For any fixed color A, the νt-measure of {x ∈ E with at least
w elements of A} is at most M

(
t
w

)
µ(A)wnt−w. So, summing over all the color

classes we get

Dnt ≤ νt(E) ≤M
(
t

w

)∑
A

µ(A)wnt−w

≤
(
t

w

)
M

(
3

2
Cn

)w∑
A

nt−w

≤
(
t

w

)
M

(
3

2
C

)w
nw · snt−w

=

(
t

w

)
M

(
3

2
C

)w
snt

which means

s ≥ 2wD

3wCw
(
t
w

)
M
.
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Since each color class has measure at least 1
2Cn, and they are all disjoint,

n = µ(X) ≥ 2wD

3wCwM
(
t
w

) · 1

2
Cn > n,

which is a contradiction, so there must be a w-subrainbow element.

3.2.3 Proof of Corollary 1.16

Proof. Given any three of (x, y, z, x + y + z, x + 2y + 3z), the other two are
uniquely determined (since 2 and 3 do not divide |G| for each g ∈ G there are
unique h2, h3 such that 2h2 = 3h3 = g, and we can solve for x, y, z whilst only
dividing out by these two numbers). So M3 =

(
5
3

)
= 10; since there is a unique

quintuple for every (x, y, z) ∈ G3, there are |G|3 total quintuples, so D = 1.
t = 3, and the two cases correspond to w = 2 and w = 3 respectively. Plugging
in to the statement of Theorem 1.15 we get

C <
2 · 1

32 · 10 ·
(
3
2

) =
1

135

in the first case and

C2 <
22 · 1

33 · 10 ·
(
3
3

) =
2

135

C <

√
2

135

in the second case.
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